最近,幾位重量級技術公司的領導者公開預測了物聯網(IoT或IoE,萬物互聯網)的爆炸性增長。盡管在初期,物聯網市場的表現并未達到預期,但現在似乎可以肯定,它有望飛快的加速增長。隨更先進網絡技術(例如5G無線網絡)的出現,如今的IoT幾乎可以實現所有設備及內容的互連!無疑,這種技術轉型的規模將是驚人的,并將在信息產業中創造巨大的機會。

Figure 1 IoT 網絡連接層次  IoT Networking Hierarchy


物聯網作為對現有互聯網技術的演進,保持了相同的層次結構:從集中式核心網絡到邊緣聚合,最后到接入設備。大量數據在所有連接的節點之間來回傳輸。

Figure 2 各級IoT 抽象層(IoT Abstraction Layers

實際上,物聯網的主要功能無疑為一個巨量到不可思議數據的傳輸,存儲和處理。到目前為止,互聯網上的所有信息和數據大部分是由人類創造的,或者至少是在人類的幫助下創造的。但是隨著物聯網的發展,智能設備將在物聯網上生成更多的“機器對人”數據及“機器對機器”數據。根據IDC的研究,到2025年,由物聯網生成的數據總量將為79.4 ZB,即102110的21次方)字節。為了處理數十億個IoT節點生成的海量數據,處理器和存儲技術都需要急需加速發展以變得更加便宜和高效。


數據存儲和處理可以在云,核心網絡,邊緣網絡或設備本身中進行。在核心和邊緣網絡中,PCM可以用作為主內存——用于增加內存總容量并同時減少內存訪問延遲和成本?;赑CM的存儲產品(例如英特爾的Optane? DCPM)受到了數據中心運營商的廣泛關注和歡迎,因為DCPM產品已體現出在提高存儲性能的同時降低了成本的優勢。


Figure 3 Intel OptaneDCPM DIMM Modules on a Server motherboard.

Figure 4 IoT 芯片解剖-除了無線收發器之外,內存組件消耗最多的芯片面積。(Anatomy of an IoT Device Chip - Other than the Radio Transceiver, Memory components occupy the most chip area.)

隨著更多數據的產生,隨之而來的是數據處理,這就是將數據中包含的信息變成對人類社會有用的東西。傳統的馮·諾依曼處理器架構并未設計用于此類數據密集型任務,因此信息產業界正在開發和部署新的計算體系架構以處理所謂的大數據。業界特別關注一種稱為內存內計算CIM)的新體系結構,該體系結構將某些數據處理器置于主存儲器中,以實現極高效的數據訪問。但是由于現有技術限制的因素,這種看似簡單的想法很難實現。


當處理器需要在近距離處理數據時,最直接的方法是在同一芯片上構建處理器和內存。但是,由于現有的內存制造工藝與標準CMOS邏輯工藝的差異,所有當前的存儲技術都無法以優化的方式來做到這種類型的集成。在這方面,PCM具有真正的獨特優勢,因為PCM的制造工藝自始便基于無縫集成到最先進的CMOS工藝中。這使得PCM可以用作內存近內存計算的主存儲器,并可在同一芯片上設計對于數據處理功能強大的處理器。由于PCM特殊的相變電阻值特性,可以使用數字,模擬甚至神經形態方法來處理數據,這使PCM成為了一個重要的新計算系統技術驅動力。 PCM與數據處理技術的集成必將使新的計算方式成為可能,并讓IoT數據的處理從中受益。


最后,相互連接的設備也可以從PCM技術中受益。對于設備上的數據存儲,除了替換傳統的NOR或NAND 存儲器,PCM憑借其NVM屬性和超快速的訪問時間,可以確保這些設備的最佳性能。實際上,由于PCM具有接近DRAM的性能,因此可以將其直接連接到片上系統(SoC)中嵌入式MCU的處理器總線作為所謂的“緊密耦合存儲”(TCM),從而簡化并加速了系統啟動過程及對關鍵事件的響應并增強了安全性,因為所有關鍵數據始終可以隱藏在MCU芯片內部。無容質疑,安全性在IoT設備的功能上占了極大的重要性。

在物聯網設備中使用PCM的另一個主要優勢是達到待機功耗的潛力。當物聯網設備進入待機或睡眠狀態時,易失性內存組件需要始終通電以保持數據活動。使用非易失性PCM時,可以將整個芯片深度掉電以消耗很少的功率。對于大多數電池供電的設備而言,這可節省大量電能,因為這些設備的待機功耗約占其總功耗的30%。

 


過去四十年來,半導體技術的進步無疑是導致今天物聯網發展最重要的推動因素。正如戈登·摩爾(Gordon Moore)于1970年前后預測的那樣,晶體管性能每2年大約增加一倍,同時成本也降低一半。他的預測是基于半導體制程開發和MOS晶體管線性縮減理論的觀察結果。

Figure 5 摩爾定律與Intel處理器進展(Moore's Law with Intel Processor Evolution


在經歷了摩爾定律四十多年之后,期間該定律為半導體器件性能的提升提供了一條技術的路徑,而如今繼續搭乘MOS縮減便車”的方法似乎已接近尾聲。盡管一些技術人員仍然聲稱將會有“更深的摩爾定律”(more Moore),但也有許多其他人選擇采取 “更多的摩爾定律“ (more then Moore)途徑。

 

隨著我們接近即將到達的半導體技術“十字路口”,PCM技術已漸進成熟并隨時準備支持技術競賽的下一站,無論其走向何方。


IoT 將帶動一更加整合的信息產業的發展,整個產業鏈往后的發展也必須要微電子技術的支持。在目前兩大不同技術路徑下,PCM是一個雙路徑的技術。讓我們拭目以待PCM技術帶進IoT產業的成功!


Figure 6 PCM作為半導體技術的雙路徑解決方案 (PCM as a dual-track  semiconductor technology solution.)




PCM in the IoT Era


Recently, some heavy-weight technology company leaders have openly predicted an explosive rise of the Internet of Things (IoT, or IoE, Internet of Everything).  Although at its beginning, IoT market did not perform as predicted, now it seems certain that it is headed for accelerated growth.  With the advent of more advanced networking technologies such as the 5G wireless networks, the IoT can now indeed interconnect almost everything!  Undoubtedly, the scale of such technology transformation will be phenomenal and will create tremendous opportunities in the IT marketplace.

IoT, as an evolution to existing Internet technology, maintains the same hierarchical architecture: from the centralized Core networks to edge aggregation and finally to the access devices.  Massive amounts of data travels back and forth between all the connected nodes.

In fact, the main function of the IoT network is undoubtedly the transmission, storage and processing of the unimaginable amounts of data.  Up until now, all the information and data on the internet has been mostly created by, or at least, with help from humans.  But as IoT grows, the smart devices will generate much more machine-to-human and machine-to-machine data on the IoT.  According to IDC, the total amount of data generated by 2025 will be 79.4 zettabytes(ZB), which is 1021 Bytes.  Both the Processor and Storage technologies need to evolve to become both cheaper and efficient in order to handle the massive data generated by the billions of IoT nodes.

Data storage and processing can happen in the cloud, at the Core network, the edge network or in the device itself.   At the Core and Edge networks, PCM can be used as main memory to increase memory capacity at the same time reducing the access latency and cost.  PCM based storage products such as Intel’s Optane? DCPM have received much attention and welcomed by Data center operators, as the DCPM product have been shown to increase storage performance while reducing cost.

  With more data, along comes the processing of data, which is to turn the information contained in data into something useful to the human society.  Traditional Von Neumann processor architecture was never designed for such data intensive tasks, so new computing paradigms are being developed and deployed to process the so called “Big Data”.  A new architecture called Compute-In-Memory (CIM) has been of particular interest to the industry, in which some processor resides within the main memory to allow for extremely efficient data access.  This seemingly simple idea turns out to be very difficult to realize due to major technology limitations.  

When a processor needs to handle the data at close range, the most straightforward way is to build the processor and the memory on the same die.  However, all the current memory technologies do not allow this type of integration due to major process differences with the standard CMOS logic process. In this regard, PCM has a truly unique advantage, as the PCM manufacturing has been developed to seamlessly integrate into the most advanced CMOS process.  This allows PCM to be used as the main memory for In- or Near-Memory Computing, with powerful processors designed on to the same die.  Due to PCMs special properties, the data can be processed either using digital, analog, or even neuromorphic methods, all of which can be implemented using PCM technology, this makes PCM a significant new technology driver.  The integration of PCM and data processing technology will definitely enable and immensely benefit new ways of computing.

Lastly, the inter-connected devices can also benefit from PCM technology.  For on-device data storage and processing, other than replacing the traditional NOR/NAND flash storage, PCM can ensure top performance of these devices with the its NVM property and super-fast access time.  In fact, with near-DRAM performance, PCM can be directly interfaced to the processor bus of the embedded MCUs, simplifying the boot process, and enhance security as all critical data can be always hidden inside the MCU chip.

Another major benefit for using PCM in the IoT devices is the potential of “zero” standby-power.  When IoT devices goes into stand-by or sleep, the volatile memory components needs to be always powered on to keep the data alive.  When using the Non-volatile PCM, the entire chip can be put into deep power-down to consume very little power.  This is a significant power savings as for most battery powered devices, their stand-by power consumption can account for roughly 30 percent of its total power usage.

The Semiconductor technology advancement during the past 4 decades in undoubtedly the most important enablement factor that eventually led to the IoT evolution.  As Gordon Moore predicted since 1970 that the transistor performance roughly doubles every 2 years, while cost is reduced by half.  His prediction was based on observations from process development and MOS Transistor scaling theory.  

After over four decades of Moore’s law, which provided a crystal-clear path for Semiconductor Performance advancements, the MOS scaling “free-ride” seems to be nearing its end.  While some technologists still claim that there will be “More Moore”, there are also many others taking the “More than Moore” pathway.  

As we approach the impending Semiconductor Technology Crossroads, PCM is strongly poised to support the next leg of the technology race no matter where its headed.  

谷歌董事長:我可以非常直接地說,互聯網將消失!一個比它更大的產業將出現!

鏈接: http://www.sohu.com/a/144952733_765177


文/王建群

排版/張樂辰


2019年11月25日

半導體產業正向中國大陸轉移 將致力于快速提升其制造最新一代先進制程產品的能力
華為蘋果供應商:2020年存儲芯片將漲價 內存價格反彈

PCM技術在IoT 時代的機會

上一篇

下一篇

PCM技術在IoT 時代的機會

云南11选5遗漏真准网